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Abstract. Considering surface gravity waves which propagate in same direction we applied
canonical transformation to a water wave equation and drastically simplify the Hamiltonian.
After this transformation, corresponding equation of motion is written in x-space in a compact
form. This new equation is suitable for analytical studies and numerical simulations. Localized
in space breather-type solution was found numerically by using iterative Petviashvili method.
Numerical simulation of breathers collision shows the stability of such solutions. We observed
the freak wave formation in numerical simulations of sea surface waving in the framework of
new equation.

1. Compact equation

A one dimensional potential flow of an ideal incompressible fluid with a free surface in a gravity
field is considered. The system is Hamiltonian system and Hamiltonian variables are the free
surface elevation η(x, t) and the velocity potential at the free boundary ψ(x, t) [1]. Considering
not very steep surface waves (small parameter is a steepness of the waves µ ∼ η′x ), the
Hamiltonian can be represented by an infinite power series expansion on its natural variables.
The Hamiltonian expansion up to 4th order as follows:

H =
1

2

∫

gη2 + ψk̂ψdx− 1

2

∫

{(k̂ψ)2 − (ψx)
2}ηdx +

1

2

∫

{ψxxη
2k̂ψ + ψk̂(ηk̂(ηk̂ψ))}dx (1)

Here k̂ is modulus operator (|k|) in Fourier space and g is a gravitational acceleration. It is
well known that third order terms correspond to nonresonant three-wave processes and can be
excluded by using nonlinear canonical transformation.

Considering waves which propagate in same direction we applied canonical transformation
not only to remove cubic nonlinear terms but to simplify drastically fourth order terms in
Hamiltonian. Unlike in [2],[3] the four-wave interaction coefficient is chosen as follows:

T̃ kk1
k2k3

=
(kk1k2k3)

1

2

2π
min(k, k1, k2, k3)θ(kk1k2k3) = (2)

=
(kk1k2k3)

1

2

8π
(k + k1 + k2 + k3 − |k − k2| − |k − k3| − |k1 − k2| − |k1 − k3|) θ(kk1k2k3)
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Transformation from b(x, t) to physical variables η(x, t) and ψ(x, t) up to the second order has
the form:

η(x) =
1

√
2g

1

4
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1

4 c(x) + k̂−
1

4 c(x)∗) +
k̂

4
√
g
[k̂−

1

4 c(x)− k̂−
1

4 c∗(x)]2,

ψ(x) = −i g
1

4√
2
(k̂−

3

4 c(x) − k̂−
3

4 c(x)∗) +
i

2
[k̂−

1

4 c∗(x)k̂
1

4 c∗(x)− k̂−
1

4 c(x)k̂
1

4 c(x)]+

+
1

2
Ĥ[k̂−

1

4 c(x)k̂
1

4 c∗(x) + k̂−
1

4 c∗(x)k̂
1

4 c(x)] (3)

The third order terms are very cumbersome, so we don’t give them here. After the transformation
the Hamiltonian take the compact form:

H =

∫

c∗V̂ c dx+
1

2

∫
[

i

4
(c2

∂

∂x
c∗2 − c∗2

∂

∂x
c2)− |c|2k̂(|c|2)

]

dx (4)

Here operator V̂ in k-space is so that Vk = ωk

k
. ωk =

√
gk – dispersion law for surface gravity

waves on deep water. Equation of motion is the following:

∂c(x, t)

∂t
+ iω̂kc(x, t)− iP̂+ ∂

∂x

(

|c(x, t)|2 ∂c(x, t)
∂x

)

= P̂+ ∂

∂x

(

k̂|c(x, t)|2c(x, t)
)

(5)

here P̂+ is projection operator to the upper half-plane.
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Figure 1. Narrow breather with
V = 5 · 10−2, Ω = 5.2 (wavenumber
of the carrier wave k0 ∼ 100). Green
dashed curve corresponds to the real
part (Re(c(x, 0))); red solid curve –
modulus (|c(x, 0)|)

A monochromatic wave
c(x, t) = C0e

i(k0x−ω0t) (6)

is the simplest solution of (5). Here C0 is arbitrary complex constant. Substituting (6) into (5)
yields the following relation for frequency shift:

ω0 = ωk0 + k20 |C0|2. (7)

Recalling the transformation (3), one can see that relation (7) coincides with the well-known
Stokes correction to the frequency due to finite wave amplitude:

ω0 = ωk0(1 +
1

2
k20 |η0|2), |C0|2 =

1

2
ωk0η

2
0 (8)
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2. Breathers

Breather is the localized solution (5) following type:

c(x, t) = C(x− V t)ei(k0x−ω0t) (9)

Here k0 is the wavenumber of the carrier wave. In the Fourier space breather can be written as
follow:

ck = ei(Ω+V k)tφk (10)

Such solutions are completely determined by two real parameters: V – group velocity and Ω.
Functions φk satisfies the equation:

(Ω + V k − ωk)φk =
1

2

∫

T̃ k2k3
kk1

φ∗k1φk2φk3δk+k1−k2−k3dk1dk2dk3 (11)

Breather (9) can be found by Petviashvili method

φn+1
k =

NLn
k

Mk

[

< φn ·NL(φn) >
φn ·Mφn

]γ

, Mk = Ω+ V k − ωk,

NL(φn) = −P+ ∂

∂x

(

|φn|2∂φ
n

∂x

)

+ iP+ ∂

∂x

(

k̂
(

|φn|2
)

φn
)

Breather solution of this equation in the periodic domain 2π with V = 5 · 10−2, Ω = 5.2
(wavenumber of the carrier wave k0 ∼ 100) is shown in Fig.1. Figure 2 shows the spectrum
of the breather in log scale. These breathers can be considered as a simple model of the freak
waves.
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Figure 2. Spectrum (|ck(0)|) of
narrow breather with V = 5 · 10−2,
Ω = 5.2 (wavenumber of the carrier
wave k0 ∼ 100) in logariphmic scale.

3. Interaction of breathers

Breather is very stable structure. We performed numerical simulation of breathers collision to
prove this. The pseudospectral Fourier algorithm was applied for simulation the equation (5).
Numerical integration of the equation (5) were carried out on the base of Runge-Kutta method
4th order accurate in time. Simulation was performed in the center-of-momentum frame.

• As the initial condition we have used two breathers separated in space (distance was equal
to π.)
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• The first breather has the following parameters: V1 = 5 · 10−2, Ω1 = 5.005 (wavenumber of
the carrier wave k0 ∼ 100)

• For the second breather V2 ≃ 3.535 · 10−2, Ω2 ≃ 7.081 (wavenumber of the carrier wave
k0 ∼ 200)

Collision of two breathers is shown in Fig.3. Fourier spectrum (|ck|) in log scale for different
time moments is shown in Fig. 4. One can see that spectrum returns to it’s initial state and
the breathers profiles almost have not changed.
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Figure 3. Snapshots of breather col-
lision. Free surface for different time
moments t = 0, 107, 214, 321, 428.
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Figure 4. Fourier spectrum (|ck|) in
log scale for different time moments
t = 0, 214, 428. Red solid curve
corresponds to initial statement (t =
0); black solid curve corresponds to
the collision moment (t = 214);
blue dashed curve – spectrum after
breathers collision (t = 428)

4. Modulational Instability of Monochromatic wave

The numerical simulation of the modulational instability of the homogeneous wave train in the
framework of compact equation (5) was performed by pseudospectral Fourier method. Initial
condition was chosen as slightly perturbed monochromatic wave with the steepness µ ∼ 0.82
and wavenumber k0 = 100. After ∼ 1000 wave periods on a free surface the freak wave was
formed. The lifetime of this wave was about 10 periods, after which it disappeared. Snapshots
of free surface for different times (t = 0, 615, 635, 655) is shown on figure 5. Figure 6 shows
the zoomed freak wave profile at t = 635. One can see that the freak wave’s heigth is more
than 2 times greater than the heigth of neigbour waves.
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Figure 5. Freak wave formation.
Snapshots of free surface for different
times (t = 0, 615, 635, 655) is shown
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Figure 6. Freak wave on the free
surface at t = 635.

5. Conclusion

We have performed numerical simulations of nonlinear stage of modulational instability up to
the freak-wave formation in the framework of equation (5). The new compact equation (5)
can be generalized for the almost 2D waves i.e. waves slightly inhomogeneous in the transverse
direction y. In this case frequency ω̂ depends on both kx and ky as ω̂kx,ky , while nonlinear
terms not depend on y, and c now depends on both x and y:

∂c(x, y, t)

∂t
+ iω̂kx,kyc(x, y, t) − iP̂+

x

∂

∂x

(

|c(x, y, t)|2 ∂c(x, y, t)
∂x

)

= P̂+
x

∂

∂x

(

k̂x|c(x, y, t)|2c(x, y, t)
)

(12)
Due to specific structure of nonlinearity the equation (12) can be effectively solved numerically.
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